Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.592
Filtrar
1.
Mol Biol Rep ; 51(1): 492, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578368

RESUMO

BACKGROUND: Lactoferrin (LF) is an iron-binding multifunctional cationic glycoprotein. Previous studies have demonstrated that LF may be a potential drug for treating acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In this study, we explored the anti-inflammatory effect and mechanism of bovine lactoferrin (bLF) in ALI using the RNA sequencing (RNA-seq) technology and transcriptome analysis. METHODS AND RESULTS: Based on the differentially expressed genes (DEGs) obtained from RNA-seq of the Lung from mouse model, the bioinformatics workflow was implemented using the BGISEQ-500 platform. The protein-protein interaction (PPI) network was obtained using STRING, and the hub gene was screened using Cytoscape. To verify the results of transcriptome analysis, the effects of bLF on Lipopolysaccharide (LPS)-induced BEAS-2B cells and its anti-reactive oxygen species (ROS), anti-inflammatory, and antiapoptotic effects were studied via Cell Counting Kit-8 (CCK-8) test, active oxygen detection test, ELISA, and western blot assay. Transcriptome analysis revealed that two hub gene modules of DEGs were screened via PPI analysis using the STRING and MCODE plug-ins of Cytoscape. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these core modules are enriched in the PPAR (peroxisome proliferator-activated receptor) and AMPK (AMP-activated protein kinase) signaling pathways. Through cell experiments, our study shows that bLF can inhibit ROS, inflammatory reaction, and LPS-induced BEAS-2B cell apoptosis, which are significantly antagonized by the PPAR-γ inhibitor GW9662. CONCLUSION: This study has suggested that the PPAR-γ pathway is the critical target of bLF in anti-inflammatory reactions and apoptosis of ALI, which provides a direction for further research.


Assuntos
Lesão Pulmonar Aguda , Lactoferrina , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética , Anti-Inflamatórios/farmacologia , Apoptose , Lactoferrina/farmacologia , Lipopolissacarídeos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Food Res Int ; 182: 114143, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519174

RESUMO

Nutrition during the early postnatal period exerts a profound impact on both infant development and later-life health. Breast milk, which contains lactoferrin, a dynamic protein, plays a crucial role in the growth of various biological systems and in preventing numerous chronic diseases. Based on the relationship between early infant development and chronic diseases later in life, this paper presents a review of the effects of lactoferrin in early life on neonates intestinal tract, immune system, nervous system, adipocyte development, and early intestinal microflora establishment, as well as the preventive and potential mechanisms of early postnatal lactoferrin against adult allergy, inflammatory bowel disease, depression, cancer, and obesity. Furthermore, we summarized the application status of lactoferrin in the early postnatal period and suggested directions for future research.


Assuntos
Hipersensibilidade , Lactoferrina , Recém-Nascido , Lactente , Criança , Feminino , Humanos , Lactoferrina/farmacologia , Leite Humano , Intestinos , Doença Crônica
3.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339093

RESUMO

Lactoferrin (LF) stands as one of the extensively investigated iron-binding glycoproteins within milk, exhibiting diverse biological functionalities. The global demand for LF has experienced consistent growth. Biotechnological strategies aimed at enhancing LF productivity through microbial expression systems offer substantial cost-effective advantages and exhibit fewer constraints compared to traditional animal bioreactor technologies. This study devised a novel recombinant plasmid, wherein the AOX1 promoter was replaced with a glucose-inducible G1 promoter (PG1) to govern the expression of recombinant porcine LF (rpLF) in Pichia pastoris GS115. High-copy-number PG1-rpLF yeast clones were meticulously selected, and subsequent induction with 0.05 g/L glucose demonstrated robust secretion of rpLF. Scaling up production transpired in a 5 L fermenter, yielding an estimated rpLF productivity of approximately 2.8 g/L by the conclusion of glycerol-fed fermentation. A three-step purification process involving tangential-flow ultrafiltration yielded approximately 6.55 g of rpLF crude (approximately 85% purity). Notably, exceptional purity of rpLF was achieved through sequential heparin and size-exclusion column purification. Comparatively, the present glucose-inducible system outperformed our previous methanol-induced system, which yielded a level of 87 mg/L of extracellular rpLF secretion. Furthermore, yeast-produced rpLF demonstrated affinity for ferric ions (Fe3+) and exhibited growth inhibition against various pathogenic microbes (E. coli, S. aureus, and C. albicans) and human cancer cells (A549, MDA-MB-231, and Hep3B), similar to commercial bovine LF (bLF). Intriguingly, the hydrolysate of rpLF (rpLFH) manifested heightened antimicrobial and anticancer effects compared to its intact form. In conclusion, this study presents an efficient glucose-inducible yeast expression system for large-scale production and purification of active rpLF protein with the potential for veterinary or medical applications.


Assuntos
Anti-Infecciosos , Lactoferrina , Proteínas Recombinantes , Animais , Bovinos , Humanos , Anti-Infecciosos/farmacologia , Escherichia coli/metabolismo , Fermentação , Glucose/metabolismo , Lactoferrina/biossíntese , Lactoferrina/genética , Lactoferrina/farmacologia , Pichia/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Saccharomycetales , Staphylococcus aureus/efeitos dos fármacos , Suínos
4.
Int J Biol Macromol ; 261(Pt 2): 129842, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309386

RESUMO

Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium with adaptive metabolic abilities. It can cause hospital-acquired infections with significant mortality rates, particularly in people with already existing medical conditions. Its ability to develop resistance to common antibiotics makes managing this type of infections very challenging. Furthermore, oxidative stress is a common consequence of bacterial infection and antibiotic therapy, due to formation of reactive oxygen species (ROS) during their mode of action. In this study we aimed to alleviate oxidative stress and enhance the antibacterial efficacy of ciprofloxacin (CPR) antibiotic by its co-encapsulation with naringin (NAR) within a polyelectrolyte complex (PEX). The PEX comprised of polycationic lactoferrin (LF) and polyanionic pectin (PEC). CPR/NAR-loaded PEX exhibited spherical shape with particle size of 237 ± 3.5 nm, negatively charged zeta potential (-23 ± 2.2 mV) and EE% of 61.2 ± 4.9 for CPR and 76.2 ± 3.4 % for NAR. The LF/PEC complex showed prolonged sequential release profile of CPR to limit bacterial expansion, followed by slow liberation of NAR, which mitigates excess ROS produced by CPR's mechanism of action without affecting its efficacy. Interestingly, this PEX demonstrated good hemocompatibility with no significant in vivo toxicity regarding hepatic and renal functions. In addition, infected mice administrated this nanoplatform intravenously exhibited significant CFU reduction in the lungs and kidneys, along with reduced immunoreactivity against myeloperoxidase. Moreover, this PEX was found to reduce the lungs´ oxidative stress via increasing both glutathione (GSH) and catalase (CAT) levels while lowering malondialdehyde (MDA). In conclusion, CPR/NAR-loaded PEX can offer a promising targeted lung delivery strategy while enhancing the therapeutic outcomes of CPR with reduced oxidative stress.


Assuntos
Flavanonas , Lactoferrina , Pectinas , Humanos , Camundongos , Animais , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pectinas/farmacologia , Pectinas/metabolismo , Antibacterianos/farmacologia , Estresse Oxidativo , Glutationa/metabolismo , Ciprofloxacina/farmacologia , Pulmão/metabolismo
5.
Molecules ; 29(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38338422

RESUMO

The fusion of penetrating peptides (PPs), e.g., cell penetration peptides (CPPs) or antimicrobial peptides (AMPs), together with antimicrobial agents is an expanding research field. Specific AMPs, such as lactoferricin B (LfcinB), have demonstrated strong antibacterial, antifungal, and antiparasitic activity, as well as valuable anticancer activity, proving beneficial in the development of anticancer conjugates. The resulting conjugates offer potential dual functionality, acting as both an anticancer and an antimicrobial agent. This is especially necessary in cancer treatment, where microbial infections pose a critical risk. Leukemic cells frequently exhibit altered outer lipid membranes compared to healthy cells, making them more sensitive to compounds that interfere with their membrane. In this study, we revisited and reanalyzed our earlier research on LfcinB and its conjugates. Furthermore, we carried out new experiments with a specific focus on cell proliferation, changes in membrane asymmetric phosphatidylserine location, intracellular reactive oxygen species (ROS) generation, mitochondrial functions, and in vitro bacterial topoisomerase inhibition.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Lactoferrina/farmacologia , Lactoferrina/química , Anti-Infecciosos/farmacologia , Peptídeos/química , Testes de Sensibilidade Microbiana
6.
Biomolecules ; 14(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38254678

RESUMO

Lactoferrin (LF) is a glycoprotein that binds to iron ions (Fe2+) and other metallic ions, such as Mg2+, Zn2+, and Cu2+, and has antibacterial and immunomodulatory properties. The antibacterial properties of LF are due to its ability to sequester iron. The immunomodulatory capability of LF promotes homeostasis in the enteric environment, acting directly on the beneficial microbiota. LF can modulate antigen-presenting cell (APC) biology, including migration and cell activation. Nonetheless, some gut microbiota strains produce toxic metabolites, and APCs are responsible for initiating the process that inhibits the inflammatory response against them. Thus, eliminating harmful strains lowers the risk of inducing chronic inflammation, and consequently, metabolic disease, which can progress to type 2 diabetes mellitus (T2DM). LF and retinoic acid (RA) exhibit immunomodulatory properties such as decreasing cytokine production, thus modifying the inflammatory response. Their activities have been observed both in vitro and in vivo. The combined, simultaneous effect of these molecules has not been studied; however, the synergistic effect of LF and RA may be employed for enhancing the secretion of humoral factors, such as IgA. We speculate that the combination of LF and RA could be a potential prophylactic alternative for the treatment of metabolic dysregulations such as T2DM. The present review focuses on the importance of a healthy diet for a balanced gut and describes how probiotics and prebiotics with immunomodulatory activity as well as inductors of differentiation and cell proliferation could be acquired directly from the diet or indirectly through the oral administration of formulations aimed to maintain gut health or restore a eubiotic state in an intestinal environment that has been dysregulated by external factors such as stress and a high-fat diet.


Assuntos
Diabetes Mellitus Tipo 2 , Tretinoína , Humanos , Tretinoína/farmacologia , Lactoferrina/farmacologia , Homeostase , Antibacterianos , Íons , Ferro
7.
Biochem Biophys Res Commun ; 695: 149480, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38215552

RESUMO

Here, we report that human lactoferrin (hLF), known for its anticancer properties, induced intracellular activation of the Na+/H+ exchanger (NHE) 7 in human lung cancer PC-9 cells. Compared to non-fused hLF, the fusion of human serum albumin (HSA) with hLF (hLF-HSA) facilitated its internalization into PC-9 cells in a caveolae-mediated manner, thereby exhibiting enhanced anti-proliferative effects. Although hLF alone did not exhibit any discernible effects, hLF-HSA resulted in organelle alkalization as detected using an acidotropic pH indicator. hLF-HSA-induced elevation of organelle pH and inhibition of cancer growth were abolished by NHE7 siRNA. hLF-HSA upregulated NHE7. Thus, upon cellular uptake, hLF-HSA triggers proton leakage through the upregulation of NHE7. This process led to organelle alkalization, probably in the trans-Golgi network (TGN) as suggested by the localization of NHE7 in PC-9 cells, thereby suppressing lung cancer cell growth. Forcing the cellular uptake of hLF alone using a caveolae-mediated endocytosis activator led to an increase in organelle pH. Furthermore, cell entry of hLF also activated proton-loading NHE7, leading to organelle acidification in the pancreatic cancer cell line MIA PaCa-2. Therefore, the intracellularly delivered hLF functions as an activator of NHE7.


Assuntos
Lactoferrina , Neoplasias Pulmonares , Trocadores de Sódio-Hidrogênio , Humanos , Lactoferrina/metabolismo , Lactoferrina/farmacologia , Neoplasias Pulmonares/metabolismo , Prótons , Trocadores de Sódio-Hidrogênio/metabolismo , Rede trans-Golgi/metabolismo
8.
Biol Trace Elem Res ; 202(1): 56-72, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37059920

RESUMO

Lactoferrin is a natural cationic iron-binding glycoprotein of the transferrin family found in bovine milk and other exocrine secretions, including lacrimal fluid, saliva, and bile. Lactoferrin has been investigated for its numerous powerful influences, including anticancer, anti-inflammatory, anti-oxidant, anti-osteoporotic, antifungal, antibacterial, antiviral, immunomodulatory, hepatoprotective, and other beneficial health effects. Lactoferrin demonstrated several nutraceutical and pharmaceutical potentials and have a significant impact on improving the health of humans and animals. Lactoferrin plays a critical role in keeping the normal physiological homeostasis associated with the development of pathological disorders. The current review highlights the medicinal value, nutraceutical role, therapeutic application, and outstanding favorable health sides of lactoferrin, which would benefit from more exploration of this glycoprotein for the design of effective medicines, drugs, and pharmaceuticals for safeguarding different health issues in animals and humans.


Assuntos
Proteínas de Ligação ao Ferro , Lactoferrina , Animais , Humanos , Lactoferrina/farmacologia , Transferrina , Glicoproteínas , Antioxidantes , Suplementos Nutricionais
9.
Biol Trace Elem Res ; 202(2): 624-642, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37191759

RESUMO

The current study was designed to investigate the alleviative effect of lactoferrin interventions against the hepatotoxicity induced by titanium dioxide nanoparticles (TiO2-NPs). Thirty male Wistar rats were divided into six groups with 5 rats in each group. The first and second groups were intragastrically administered normal saline and TiO2-NPs (100 mg/kg body weight) as the negative control (NC) and TiO2-NP groups. The third, fourth, and fifth groups were intragastrically administered lactoferrin at concentrations of 100, 200, and 400 mg/kg body weight in addition to TiO2-NPs (100 mg/kg body weight). The sixth group was intragastrically administered Fuzheng Huayu (FZHY) capsules at a concentration of 4.6 g/kg body weight in addition to TiO2-NPs (100 mg/kg body weight) as the positive control group. After treatment for 4 weeks, the concentrations of lactoferrin were optimized based on the liver index and function results. Subsequently, the alleviative effects of lactoferrin interventions against TiO2-NP-induced hepatotoxicity in rat liver tissues, including the effects on histological damage, oxidative stress-related damage, inflammation, fibrosis, DNA damage, apoptosis, and gene expression, were investigated using histopathological, biochemical, and transcriptomic assays. The results showed that 200 mg/kg lactoferrin interventions for 4 weeks not only ameliorated the liver dysfunction and histopathological damage caused by TiO2-NP exposure but also inhibited the oxidative stress-related damage, inflammation, fibrosis, DNA damage, and apoptosis in the liver tissues of TiO2-NP-exposed rats. The transcriptomic results confirmed that the alleviative effect of lactoferrin interventions against the TiO2-NP exposure-induced hepatotoxicity was related to the activation of the PI3K/AKT signaling pathway.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Nanopartículas Metálicas , Nanopartículas , Ratos , Masculino , Animais , Lactoferrina/farmacologia , Fosfatidilinositol 3-Quinases , Ratos Wistar , Nanopartículas/toxicidade , Estresse Oxidativo , Titânio/toxicidade , Inflamação , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fibrose , Peso Corporal , Nanopartículas Metálicas/toxicidade
10.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 395-402, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37908179

RESUMO

The effects of in ovo lactoferrin (Lf) injection on some physiological parameters and immune response of posthatch chicks were investigated. Live embryonated Fayoumi chicken eggs (n = 600) were randomly allocated into four groups. The first group as a control was noninjected eggs, the second group was only injected with 0.1 mL of NaCl 0.75% solution, and the third and fourth groups were injected with 50 and 100 µL Lf dissolved in 0.1 mL saline solution respectively. The eggs were injected on Day 15 of incubation in the amnion. The results illustrated that the hatchability of eggs in two Lf groups was significantly higher than in the control, NaCl groups. The residual yolk in chicks injected with Lf (100 µL/egg) was significantly lower than the control group (p < 0.05). In ovo Lf injection improved lipid profile, liver function, antioxidant indices, blood haematology, serum immunoglobulins and jejunum histomorphometry compared to the control group (p < 0.05). In ovo injection of Lf decreased significantly (p < 0.001) of pathogenic bacteria in residual yolk such as Salmonella, Shigella and Coliform compared to the control group. In conclusion, in ovo Lf injection can improve the hatchability, lipid profile, immune response and antioxidant indices and decline pathogens in the residual yolk, thus boosting the health status of newly hatched Fayoumi chicks.


Assuntos
Galinhas , Lactoferrina , Animais , Lactoferrina/farmacologia , Antioxidantes , Cloreto de Sódio , Óvulo , Imunidade , Lipídeos
11.
Br J Oral Maxillofac Surg ; 62(1): 4-14, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042716

RESUMO

Currently, there is growing interest in the potential use of lactoferrin (LTF), a member of the transferrin family, for the improvement of tissue healing. In this sense, a literature search was conducted to integrate data published on the effect of LTF on jawbone repair. PubMed/MEDLINE, Scopus, Embase, Web of Science, LILACS, and Cochrane databases were retrieved according to the PRISMA 2020 statement. Articles in English, Spanish, and Portuguese were recovered, with no year restriction. In vitro, in vivo, and clinical studies were selected. A total of 742 articles were retrieved, 11 of which met the inclusion criteria (5 in vitro and 5 in vivo studies, and one clinical trial). The included data demonstrated wide variations in study design and LTF therapy protocols. Cell proliferation and viability were the primary outcomes evaluated in the in vitro studies, all of which reported a potential effect of LTF on the repair process. Of three in vivo studies, one reported a reduction in the overall healing rate, whereas the other two showed that LTF inhibited bone resorption and increased bone formation. The clinical trial's findings showed that LTF is a potential promoter of wound repair in patients with medication-related osteonecrosis of the jaws. Overall, data from the studies support a potential effect of LTF therapy on the process of jawbone repair.


Assuntos
Lactoferrina , Osteonecrose , Humanos , Lactoferrina/farmacologia , Lactoferrina/uso terapêutico , Arcada Osseodentária
12.
Int J Biol Macromol ; 256(Pt 1): 128392, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029917

RESUMO

The increased mortality rates associated with colorectal cancer highlight the pressing need for improving treatment approaches. While capsaicin (CAP) has shown promising anticancer activity, its efficacy is hampered due to low solubility, rapid metabolism, suboptimal bioavailability, and a short half-life. Therefore, this study aimed to prepare a lactoferrin-functionalized carboxymethyl dextran-coated egg albumin nanoconjugate (LF-CMD@CAP-EGA-NCs) for the targeted CAP delivery to enhance its potential for colorectal cancer therapy. Briefly, LF-CMD was synthesized through an esterification reaction involving LF as a receptor and CMD as a shell. Concurrently, CAP was incorporated into an EGA carrier using gelation and hydrophobic interactions. The subsequent production of LF-CMD@CAP-EGA-NCs was achieved through the Maillard reaction. Spectral characterizations confirmed the successful synthesis of smooth and spherical-shaped LF-CMD@CAP-EGA-NCs using LF-CMD and EGA-CAP nanoparticles, with high entrapment efficiency and satisfactory drug content. Furthermore, LF-CMD@CAP-EGA-NCs demonstrated a sustained release of CAP (76.52 ± 1.01 % in 24 h, R2 = 0.9966) in pH 5.8 buffer with anomalous transport (n = 0.68) owing to the shell of the CMD and EGA matrix. The nanoconjugate exhibited enhanced cytotoxicity in HCT116 and LoVo cell lines, which is attributed to the overexpression of LF receptors in colorectal HCT116 cells. Additionally, LF-CMD@CAP-EGA-NCs demonstrated excellent biocompatibility, as observed in the FHC-CRL-1831 cell line. In conclusion, LF-CMD@CAP-EGA-NCs can be considered as a promising approach for targeted delivery of CAP and other anticancer agents in colorectal cancer treatment.


Assuntos
Neoplasias Colorretais , Dextranos , Nanopartículas , Humanos , Nanoconjugados , Lactoferrina/farmacologia , Lactoferrina/química , Capsaicina , Nanopartículas/química , Neoplasias Colorretais/tratamento farmacológico
13.
Appl Biochem Biotechnol ; 196(3): 1464-1480, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37418128

RESUMO

Lactoferrin is a multifunctional glycoprotein present in mammalian milk. It possesses antimicrobial, antioxidant, immunomodulatory, and several biological functions. Owing to the current trend of increasing antibiotic resistance, our study was designed to purify lactoferrin from camel milk colostrum using cation exchange chromatography on the SP-Sepharose high-performance column. The purity and molecular weight of lactoferrin were checked by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The chromatogram of the purification procedure illustrated a single peak corresponding to lactoferrin, while the SDS-PAGE revealed 78 kDa molecular weight protein. Furthermore, lactoferrin protein and its hydrolysate form were assessed for its antimicrobial potential. The highest inhibitory effect of whole lactoferrin at the concentration (4 mg/ml) was observed against methicillin-resistant S. aureus (MRSA) and S. aureus, while 10 mg/ml concentration was effective against K. pneumonia, and 27 mg/ml was potent against multidrug-resistant (MDR) bacteria, P. aeruginosa. Likewise, MRSA was more sensitive toward iron-free lactoferrin (2 mg/ml) and hydrolyzed lactoferrin (6 mg/ml). The tested lactoferrin forms showed variability in minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) among tested bacteria. The scanning electron microscopy (SEM) analysis images revealed distortions of the bacterial cells exposed to lactoferrin. The antibiofilm effect differed depending on the concentration and the type of the bacteria; biofilm inhibition ranged from 12.5 to 91.3% in the tested pathogenic bacteria. Moreover, the anticancer activity of lactoferrin forms exhibited a dose-dependent cytotoxicity against human lung cancer cell line (A549).


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Animais , Humanos , Lactoferrina/farmacologia , Lactoferrina/química , Staphylococcus aureus , Camelus , Leite/química , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Bactérias , Biofilmes , Antibacterianos/química
14.
J Dairy Sci ; 107(3): 1603-1619, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37769949

RESUMO

Calf diarrhea, a common disease mainly induced by Escherichia coli infection, is one of the main reasons for nonpredator losses. Hence, an effective nonantibacterial approach to prevent calf diarrhea has become an emerging requirement. This study evaluated the microalgae Schizochytrium sp. (SZ) and lactoferrin (LF) as a nutrient intervention approach against E. coli O101:K99-induced preweaning calve diarrhea. Fifty 1-d-old male Holstein calves were randomly divided into 5 groups (n = 10): (1) control, (2) blank (no supplement or challenge), (3) 1 g/d LF, (4) 20 g/d SZ, or (5) 1 g/d LF plus 20 g/d SZ (LFSZ). The experimental period lasted 14 d. On the morning of d 7, calves were challenged with 1 × 1011 cfu of E. coli O101:K99, and rectum feces were collected on 3, 12, 24, and 168 h postchallenge for the control, LF, SZ, and LFSZ groups. The rectal feces of the blank group were collected on d 14. Data were analyzed using the mixed procedure of SAS (version 9.4; SAS Institute Inc.). The E. coli K99 challenge decreased the average daily gain (ADG) and increased feed-to-gain ratio (F:G) and diarrhea frequency (control vs. blank). Compared with the control group, the LFSZ group had a higher ADG and lower F:G, and the LFSZ and SZ groups had lower diarrhea frequency compared with the control group. In addition, the LFSZ and SZ groups have no differences in diarrhea frequency compared with the blank group. Compared with the control group, the blank group had lower serum nitric oxide (NO), endothelin-1, d-lactic acid (D-LA), and lipopolysaccharide (LPS) concentrations, as well as serum IgG, IL-1ß, IL-6, IL-10, and TNF-α levels on d 7 and 14. On d 7, compared with the control group, all treatment groups had lower serum NO level, the SZ group had a lower serum D-LA concentration, and the LF and LFSZ groups had lower serum LPS concentration. On d 14, compared with the control group, the fecal microbiota of the blank group had lower Shannon, Simpson, Chao1, and ACE indexes, the LFSZ group had lower Shannon and Simpson indexes, the SZ and LFSZ groups had a higher Chao1 index, and all treatment groups had a higher ACE index. In fecal microbiota, Bifidobacterium and Actinobacteria were negatively associated with IL-10 and d-lactate, while Akkermansia was negatively associated with endothelin-1 and positively correlated with LPS, fecal scores, and d-lactate levels. Our results indicated that LF and SZ supplements could alleviate E. coli O101:K99-induced calf diarrhea individually or in combination. Supplementing 1 g/d LF and 20 g/d SZ could be a potential nutrient intervention approach to prevent bacterial diarrhea in calves.


Assuntos
Escherichia coli , Interleucina-10 , Masculino , Animais , Bovinos , Lactoferrina/farmacologia , Endotelina-1 , Lipopolissacarídeos , Diarreia/prevenção & controle , Diarreia/veterinária , Suplementos Nutricionais , Ácido Láctico , Óxido Nítrico , Ração Animal , Dieta/veterinária , Desmame
15.
Br J Pharmacol ; 181(6): 896-913, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37309219

RESUMO

BACKGROUND AND PURPOSE: Overexpression of astrocytic lactoferrin (Lf) was observed in the brain of Alzheimer's disease (AD) patients, whereas the role of astrocytic Lf in AD progression remains unexplored. In this study, we aimed to evaluate the effects of astrocytic Lf on AD progression. EXPERIMENTAL APPROACH: Male APP/PS1 mice with astrocytes overexpressing human Lf were developed to evaluate the effects of astrocytic Lf on AD progression. N2a-sw cells also were employed to further uncover the mechanism of astrocytic Lf on ß-amyloid (Aß) production. KEY RESULTS: Astrocytic Lf overexpression increased protein phosphatase 2A (PP2A) activity and reduced amyloid precursor protein (APP) phosphorylation, Aß burden and tau hyperphosphorylation in APP/PS1 mice. Mechanistically, astrocytic Lf overexpression promoted the uptake of astrocytic Lf into neurons in APP/PS1 mice, and conditional medium from astrocytes overexpressing Lf inhibited p-APP (Thr668) expression in N2a-sw cells. Furthermore, recombinant human Lf (hLf) significantly enhanced PP2A activity and inhibited p-APP expression, whereas inhibition of p38 or PP2A activities abrogated the hLf-induced p-APP down-regulation in N2a-sw cells. Additionally, hLf promoted the interaction of p38 and PP2A via p38 activation, thereby enhancing PP2A activity, and low-density lipoprotein receptor-related protein 1 (LRP1) knockdown significantly reversed the hLf-induced p38 activation and p-APP down-regulation. CONCLUSIONS AND IMPLICATIONS: Our data suggested that astrocytic Lf promoted neuronal p38 activation, via targeting to LRP1, subsequently promoting p38 binding to PP2A to enhance PP2A enzyme activity, which finally inhibited Aß production via APP dephosphorylation. In conclusion, promoting astrocytic Lf expression may be a potential strategy against AD. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Masculino , Camundongos , Animais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Transgênicos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteína Fosfatase 2/metabolismo , Lactoferrina/farmacologia , Astrócitos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Presenilina-1/metabolismo
16.
Brain Res ; 1822: 148622, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832760

RESUMO

Experiments have demonstrated that frankincense may offer protection against scopolamine-induced Alzheimer's disease by mitigating cholinergic dysfunction and inhibiting inflammatory mediators. Nevertheless, its instability and limited water solubility lead to diminished medicinal efficacy. In this study, we utilized PMBN (poly [MPC-co-(BMA)-co-(MEONP)]) as a nanocarrier for targeted brain drug delivery of frankincense, employing lactoferrin as a ligand for precise targeting. Characterization of nanoparticle properties was conducted through FTIR and FESEM analysis, and the in-vitro drug release percentage from the nanoparticles was quantified. To induce Alzheimer's-like dementia in rats, scopolamine was intraperitoneally administered at a dose of 1 mg/kg/day for 14 days. Subsequently, behavioral assessments (Y-maze, passive avoidance test, tail suspension test) were performed, followed by evaluations of acetylcholinesterase (AChE), reduced glutathione (GSH), catalase (CAT), and brain histopathology at the conclusion of the treatment period. The results revealed that the nanoparticles had a size of 106.6 nm and a zeta potential of -3.8 mV. The maximum release of frankincense in the PBS environment from PMBN nanoparticles was 18.2 %, in accordance with the Peppas model. Behavioral tests indicated that targeted drug nanoparticles (F-PMBN-Lf) exhibited the capability to alleviate stress and depression while enhancing short-term memory in scopolamine-induced animals. Additionally, F-PMBN-Lf counteracted the scopolamine-induced elevation of AChE activity and GSH levels. However, it resulted in decreased activity of the antioxidant enzyme CAT compared to the scopolamine group. Histological analysis of brain tissue suggested that F-PMBN-Lf exerted a notable neuroprotective effect, preserving neuronal cells in contrast to the scopolamine-induced group. It appears that the polymer nanoparticles containing this plant extract have introduced a novel neuroprotective approach for the treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Franquincenso , Animais , Ratos , Acetilcolinesterase/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Franquincenso/farmacologia , Franquincenso/uso terapêutico , Lactoferrina/farmacologia , Lactoferrina/uso terapêutico , Aprendizagem em Labirinto , Transtornos da Memória/tratamento farmacológico , Estresse Oxidativo , Escopolamina/efeitos adversos , Escopolamina/farmacologia , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia , Sistemas de Liberação de Fármacos por Nanopartículas/uso terapêutico
17.
Free Radic Biol Med ; 212: 309-321, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38159893

RESUMO

Vascular endothelial dysfunction (ED) is one of the mechanisms underlying obesity-related hypertension. Perivascular adipose tissue (PVAT) surrounds blood vessels and influences the vascular endothelium function. Previous studies have demonstrated the antihypertensive effects of lactoferrin (LF) and its hydrolysates through various mechanisms. However, the effect of LF on ED and PVAT has not yet been investigated. In this study, we examined the influence of LF on ED and PVAT using high-fat diet mice as well as MAEC cells and 3T3-L1 adipocytes. Finally, LF supplementation decreases the systolic blood pressure (SBP), serum adhesion molecule (ICAM-1 and VCAM-1), and aorta ROS levels, and improves endothelium-dependent relaxation function in high-fat diet mice. Moreover, LF supplementation down-regulates the Tak1/IL-18/eNOS pathway between PVAT and aorta and enhances the NO generation in high-fat diet mice. In addition, we observe that LF decreases the expression levels of IL-18 and p-Tak1 in 3T3-L1 adipocytes, but fails to influence the eNOS and p-eNOS expression levels in MAEC cells. Finally, the significant associations between LF and IL-18 and SBP and hypertension risk are also observed in obesity children only. These findings provide evidence that the Tak1/IL-18/eNOS pathway between the aorta and PVAT is important in obesity-related ED, and LF may improve ED or even hypertension by down-regulating this pathway.


Assuntos
Endotélio Vascular , Hipertensão , Criança , Humanos , Camundongos , Animais , Endotélio Vascular/metabolismo , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-18/farmacologia , Transdução de Sinais , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipertensão/metabolismo
18.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069040

RESUMO

Our previous study showed that not only bovine lactoferrin (LF), the protein of milk and neutrophils, but also the human species forms complexes with oleic acid (OA) that inhibit tumor growth. Repeated injections of human LF in complex with OA (LF/8OA) to hepatoma-carrying mice decelerated tumor growth and increased animals' longevity. However, whether the effect of the LF/8OA complex is directed exclusively against malignant cells was not studied. Hence, its effect on normal blood cells was assayed, along with its possible modulation of ceruloplasmin (CP), the preferred partner of LF among plasma proteins. The complex LF/8OA (6 µM) caused hemolysis, unlike LF alone or BSA/8OA (250 µM). The activation of neutrophils with exocytosis of myeloperoxidase (MPO), a potent oxidant, was induced by 1 µM LF/8OA, whereas BSA/8OA had a similar effect at a concentration increased by an order. The egress of heme-containing proteins, i.e., MPO and hemoglobin, from blood cells affected by LF/8OA was followed by a pronounced oxidative/halogenating stress. CP, which is the natural inhibitor of MPO, added at a concentration of 2 mol per 1 mol of LF/8OA abrogated its cytotoxic effect. It seems likely that CP can be used effectively in regulating the LF/8OA complex's antitumor activity.


Assuntos
Carcinoma Hepatocelular , Hemeproteínas , Camundongos , Humanos , Animais , Ceruloplasmina/metabolismo , Ácido Oleico/farmacologia , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Hemeproteínas/metabolismo , Heme/metabolismo
19.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069169

RESUMO

Our previous animal studies found that the preventive effects of lactoferrin (Lf) on alcoholic liver injury (ALI) are associated with nuclear factor E2-related factor 2 (Nrf2). To further explore the causality, experiments were performed using rat normal liver BRL-3A cells. Lf treatment reduced ethanol-induced death and apoptosis; meanwhile, Lf treatment alleviated excessive LDH release. These findings confirmed the protection of Lf against ethanol-induced injury in BRL-3A cells. Mechanistically, Lf treatment reversed the reduction in nuclear Nrf2 induced by ethanol without affecting the cytoplasmic Nrf2 level, which led to antioxidant enzyme activity restoration. However, the blocking of Nrf2 nuclear translocation by ML385 eliminated the protective effects of Lf. In a conclusion, Lf protects BRL-3A cells from ethanol-induced injury via promoting Nrf2 nuclear translocation.


Assuntos
Etanol , Lactoferrina , Ratos , Animais , Etanol/toxicidade , Etanol/metabolismo , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular , Fígado/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo
20.
BMC Oral Health ; 23(1): 993, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082265

RESUMO

BACKGROUND: Lactoferrin, a glycoprotein naturally found in breast milk, is known for its bactericidal and antiviral properties, as well as its capacity to modulate the immune system; therefore, pediatricians routinely recommend it as dietary support. The objective of this study was to determine how lactoferrin oral suspension could affect the enamel surface characteristics of primary and permanent teeth. METHODS: This research was conducted on 40 unidentified extracted teeth, including primary and permanent teeth. Experimental teeth were free of cracks or enamel defects, as confirmed by careful examination using a dental operating microscope. The crowns were bisected into 80 specimens and assorted into two groups based on the type of dentition. Group DM included 40 specimens of second deciduous molars, while Group PM contained 40 samples of first premolars. Each of the DM and PM specimens was subsequently split based on the type of dispersion medium into two subgroups: a control subgroup (artificial saliva) and a test subgroup (lactoferrin suspension). The specimens were immersed in lactoferrin suspension for two minutes, then kept in artificial saliva for the rest of the 24 h for 30 successive days. This is a pioneering study about the effect of orally supplemented lactoferrin on teeth; therefore, we examined enamel hardness, ultra-morphology, and mineral contents. RESULTS: Our findings indicated a highly significant decrease (p < 0.01) in the microhardness of the lactoferrin subgroup in Group DM (second deciduous molars) and a significant reduction (p < 0.05) in the microhardness of the lactoferrin subgroup in Group PM (premolars). Calcium weight% was not statistically different (p > 0.05) compared with a significant decline (p < 0.05) in phosphorus weight% in lactoferrin subgroups in both DM and PM groups. The enamel surface of lactoferrin subgroups in both DM and PM groups was demineralized and porous, with the enamel of deciduous teeth being more affected by lactoferrin than permanent teeth. CONCLUSION: Lactoferrin suspension decreased the microhardness of enamel and both calcium and phosphorus weight percentages. Both dentitions exhibited erosions in the enamel surface, with primary teeth being more affected than the permanent teeth.


Assuntos
Cálcio , Lactoferrina , Humanos , Lactoferrina/farmacologia , Saliva Artificial/farmacologia , Dente Decíduo , Esmalte Dentário , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...